
IEEE TRANSACTIONS ON MICROWAVE THSORY AND TECHNIQUES, VOL. MTT-31, NO. 4, APRIL 1983326

[10]

[11]

piers,” IEEE Trans. Microwave Theoty Tech., vol. M’IT- 13, pp.

544-558, Sept. 1965.

S. B. Cohn, “A class of broad-band three-port TEM-mode hybrids,”
IEEE Trans. Microwave Theoy Tech., vol. MTP 16, pp. 110-116,

Feb. 1968.

S. Li and R. G. Bosisio, ” Calibration of multi-port reflectometer by

six-port automatic network anafyzer techniques. He is now a Member of

the Technical Staff in the Fourth Research Institute, Ministry of Posts
and Telecommunications, Xian, People’s Republic of China.

Dr. Li’s interests are in electromagnetic theory and computer-aided

microwave design and measurement.

means of four short/open circuits,” IEEE Tram. Microwave Theory
Tech., vol. MTT-30, pp. 1085-1089, July 1982.

*

*

Shihe Li (S8 I –M83) was born in Chongqing,

Sichuan, China, on April 28, 1941. He graduated

from the Chentu Institute of Radio Engineering,

China, in 1963, and finished his graduate pro-

gram at the Department of Physics, Nanking

University, Chirta, in 1966. He received the Ph.D.
degree from the Ecole Polytechnique, University
of Montreaf, Montreaf, Canada, in 1982.

From 1968 to 1979, he was a Research Engineer
at the Fourth Research Institute, Ministry of
Posts and Telecommunications, China. He had

engaged in the development of high-efficient reflector antennas, micro-
wave ferrite materiafs, low-loss nonreciprocal microwave devices, and
microwave IC’S. He arrived at the Ecole Polytechnique de Montreal,

Montreaf, Canada, in 1980, and did some research and developments on

Renato G. Bosisio (M79) was born in Monza,
Itsdy, on June 28, 1930. He received the B. SC.

degree from McGill University, Montreal,

Quebec, Canada, in 1951, and the M. S.E.E. de-
gree from the University of Florida, Gainesville,

in 1963.

He has been engaged in microwave research
and development since 1957 with various firms in
Canada (Marconi and Varirm), in the U.S.
(Sperry), and in England (English Electric). He is

mesentlv Head of the Section d’Electr@nag.

netisme et d’Hyperfr&q~ences al the Ecole Polytechnique de Montre~,

University of Montreaf, where he teaches microwave theory and techniques
and is actively engaged in microwave power applications, instrumentation,

and dielectric measurements.
Professor Bosisio is a member of IMPI, Phi Kappa Phi, Sigma Xi, and

1‘Ordre des Ingenieurs du Quebec.

Finite Element Analysis of Lossy Waveguides-
Application to Microstrip Lines

on Semiconductor Substrate

MICIHEL AUBOURG, JEAN-PIERRE VILLOITE, FRANCK GODON, AND YVES GARAULT

Abstract —The development of Maxwell’s equations is made consider-

ing the electromagnetic fields as vector dklributions. WItfr the aid of the

finite element method, an anafysis of Iossy shielded inhomogenous wave-

guides of arbitrary shape is described.

To solvethe complex matrix system an iterative procedure is presented.

The method is applied to study the propagation on NILS or Schottky

contact microstrip lines.

I. INTRODUCTION

T HE FINITE ELEMENT method applied to hybrid

wave analysis is commonly used to study propagation

along quasi-planar lines like microstrip or coplanar

lines [1], [2] and along dielectric-loaded waveguides [3] or

Manuscript received December 14, 198 1; revised August 2, 1982. This
work was supported by the D.A.L1. under contract 80.35.188.007907500.

The authors are with the Laboratoire d’Electronique des Microondes,
University de Limoges, 87060 Limoges, Cedex, France.

dielectric waveguides [4]. In these analyses, materials are

considered lossless. It is generally sufficient because sub-

strate-like alumina or semi-insulating GaAs suited for mi-

crowave integrated circuits are low-loss media. Hence, skin

losses are the most important and can be calculated from

the current densities on the conductors.

But in monolithic microwave integrated circuits, to de-

crease the size of elements it is necessary to have a slow

wave propagation medium. It is possible to obtain very

slow wave propagation by using MIS or Schottky contact

realized on a semiconducting substrate [5]–[7]. In this case,

the propagation constant and electromagnetic field are

complex.
The purpose of this paper is to present, with the aid of

the finite element method, a two-dimensional analysis of

the propagation in inhomogeneous lossy waveguides. The

development of Maxwell’s equation is made considering
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the electromagnetic fields as distributions [8]. By applying

the finite element method, the analysis leads to a complete

matrix system.

Compared to the procedure given in [9], this solution has

the advantage of yielding symmetrical matrices in which

frequency appears as a parameter.

This numerical method is then applied to study rnicro-

strip lines on a semiconducting substrate [10].

II. DERIVATION OF EQUATIONS

A. Notation

The wave is assumed to propagate in the positive z

direction with

~(x, y,z, t)=!% e{l?(x, y,z)e~tit}

;(x, y, z,t) =~e{ll(x, y, z)e’a’} (1)

where

~(x, y,z)=F(x, y)e-Yz

ti(x, y, z)= fi(x, y)e-Y= (2a)

and

E(X, y)= it(x, y)+~z(x, Y)%

ti(x, y)= fi, (x, y)+~=(x, Y)~z (2b)

and y = a + j~ is the complex propagation constant.

The waveguide is supposed to be loaded by N lossy

dielectrics of permittivity t, and conductivity Ui. These

values can be functions of the transverse coordinates.

We define

Sli internal domain of permittivit y c~ and conductiv-

ity Oi;

L? c a,, l<i<N,
i=l

r Z>f interface between media i and j, 1s i < j < N;

re electrical walls;

rm magnetic walls;

ii{fi unit vector normal to r{fi oriented towards the

inside of the waveguide;

‘{; ~dunit vector normal to 1’1,, oriented towards Ll{;;

( “u’), if(x,~)~~~r(x, y)=: Ci–j;

[

1, if(x, y)= ~ L?,

L(.x, y)=
j=l

o, if(x, y)~ il~,.
isl

B. Transformation of the Equations

The problem is to determine the distributions of the

electromagnetic field

~(x>.Y) ~(-LY,z ) and L(x, y) fi(x, y,z).
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So the Maxwell’s equations can be written
. .

VX{L. i?}= fm, – jupOL~ (3a)
--

V X{ L”H}= ~~ + jticOcpL;. (3b)

~~, and ~~ are the current density distributions defined

respectively on the magnetic and electrical walls

?~, = Y~8rme-” (4a)

<,= @r,e-Yz. (4b)

8r~I’~) indicates that the support of ~(~) is r,(I’~).

“After a first development, (3a) leads to

(V X L~, i)+ Y(L~x ii=, ;)= (~~rm, ;)

– jtipO<L~,

where @are the test functions, i.e.,

(v XL~, @)=(L~, {V X};).

i’) (5)

({v X} means that the operator v X is taken in the

sense of functions.)

The relation (5) is equivalent to

Integrating the first term by parts we have

and writing equality between distributions, (6) leads to

{V X}~+yEXilz=-j@pOti (8a)

iiexi=o, on r, (8b)

iiexz=fm, on rm (8c)

ii, xE, +ii, xEj=o, on I’i, j,l<i<j<N.

(8d)

These relations show that the first Maxwell’s equation is

verified (in the sense of functions) (8a), the tangential

component of ~ is equal to O on an electrical wall (8b), and

is continuous at an interface (8d). T~e relation (8c) is an

identity and can be used to define J~. Similar derivation

can be made from (3b). To study the propagation it is

sufficient to solve (3a) and (3b) in which J~ and ~ are

eliminated and the supports of the distributions are re-

duced to $il~ and !J,(SI{2 = R2 – r~fi) because the currents

are induced.
Taking into account transverse and longitudinal distri-
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butions, the problem to solve is III. APPLICATION OF THE FINITE ELEMENT

METHOD
v X(L5, ) = – j+loul=iiz, on il. (9a)

The finite element method is well known [11-431.

v x (L~t) = jocof,LE,~., on L?. (9b) The method consists of dividing the cr&& ‘s~ction of

the waveguide into triangular subdomains. The unknown
with the relations between components defined by solution is approximated by polynomials. Lagrange poly-

- (lOa)
nomials are chosen as shape functions. A k degree poly-

v X( LEzii=)+yL~f X;, = – jupOLHr
nomial P(x, y) has d = (k + l)(k +2)/2 degrees of free-

v x (LH, il, )i- YLHt x ilz = jticOc,LEt. (lob) ~p~inT# Polynomial is defined if the values are known at

If the continuities of E, and Hz are imposed on ~, and if The polynomials P.(x, y) defined in (14) are associated

E, = O on 17, and Hz = O on I’m, the following relations are at each node located ‘by p (p,, p*, p?). d nodes are defined

equivalent to (10) for each mesh p,= k~,, 1< i <3: and A, are the area

coordinates

k~l?, = – Y{v}EZ – juOpO{v}H= X ~,

}k~~, = – y(v}Hz + jcocOcr{v}Ez X ii. ‘

,k~ = $+ y2
1

c2=—
c ~oPo

On a, (Ila )

‘ (llb )

with

Pw(x, Y)=qp,(~l)qp2(~ 2)4p3(~3)

=1 if p,=O (14)

For numerical procedure it is more convenient to use the qv,(~,) = fikA1(kA, - 1). . . (kAz – (p, – l)), if pi >1.

reduced longitudinal components ~ and @ defined by

#=~Ez and @=&Hz. At each node i of the triangular mesh K, the basis function

associated is

If ‘Vis the space vector of continuous functions on % We

(

Pp(x, y) V(x, y)GK
the subspace of ‘V equal to O on r=, TM the subspace of ‘V ~(x, y)= o (15)
equal to O on r~, and if 0(% are, respectively, the test V(x, y) @ K.

functions of ~, and Vm, the relations (9a) and (9b) are SO + and @ can be developed with the basis functions

equivalent to
+(x, y)= ~+jeye(x, y), lsj,sS,

~~fi~-{v x}(%~,)d~dy= -j~/~@%dxdy
&

Q ~L(x, y)= o, on r,,
(12a)

@(x, y)= Xm,mym(x, y), 1< jm ~ s>

~~wfi,{v x}(+.~,)dxdy=j~~~~,+q.dxdy L
Q

~m(x, y) = o,
(12b)

on rm

and taking into account (11), the final form of the relations
where S is the number of nodes.

Equations (13a) and (13b) then become
is

~~;{V}@{v}$%dxdy
E$jeae + E4’jJ(@e ~m) = E4j~e

c
;@lmam +’&:(14f,, @m) = ;@jmbm

‘j~~~#{V}4 X{ V}@m)”tizdxdy
A J. JIn

with
c

(13a)

(13b)

(16a)

(16b)

(17a)

(17b)

This formulation has the advantage of being directly
z(~>~)= –j~~~; ({v}~x{v}o)-~zdx dy.

deduced from Maxwell’s equations.
c
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The basis functions W,e are respectively used as functions

@eand +..

If A,, Am, B=, %, and L are matrices obtained after

development of (17), and if t) and @ represent the column

vectors { +j,} and {O,m}, respectively, (17a) and ( 17b) can be

summarized in the form

with the notation

[1A, C
A=

C’ Am

The matrix system

‘=[:‘mland‘=[:1’19)
to be solved is

AX= BX.

A and B are complex symmetrical matrices and X is a

complex column vector.

In most cases, A and X are functions of ~, (a, j3). B is a

function of a only.

If the frequency is chosen as a parameter, it is necessary

to calculate a, /3, and X.

IV. NUMERICAL PROCEDURE [10]

An iterative procedure is applied on a and ~ to solve

(19).

For a fixed frequency, aO and & are chosen. A(aO, 8.)

and Y(aO, @o) are defined by

AY= ABY. (20)

This relation is equivalent to (19) if A is equal to unity.

To realize this condition the algorithm of the power

method which gives the largest eigerivalue q is applied to

the matrix (A – B)-lB.

()
(A- B)-’BY= qYis equivalent toAY= 1+ ~ BY.

As q is the largest eigenvalue, A = 1 + l/~ extends to

one.

The Newton-Ralphson method is applied to obtain the

convergence of the iterative procedure.

A ~ is considered as the vector
()

‘e(AK)

I~(X~)
and for the

(k+ 1) iterations, a~+, and ~~+, &e “defined’ by

where Jh is the Jacobian matrix

To calculate dA~/i3a and 6’AK/i?~ it is necessary to

write A in the following form:
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Fig. 1. Cross section of the MIS rnicrostnp line.

so

(23)

The advantages of this formulation compared to a prece-

dent analysis [9] are that matrices are symmetrical (which

is an important point for numerical procedure) and that

frequency appears as a parameter.

V. APPLICATIONS

This analysis has been applied to MIS microstrip lines.

The basic structure is represented in Fig. 1.

Most analyses of rnicrostrip lines on semiconductor sub-

strates [5], [11 ], [12] have been made with the aid of the

parallel-plate waveguide model with a double layer medium

[13]. As these are one-dimensional analyses, it is necessary

to introduce a correcting factor by analogy with the com-

mon strip treatment to take into account the width of the

strip [11], [14].

More recently, the spectral domain approach (SDA) [ 15]

has been applied to the MIS structure, and the results are

in good agreement with the finite element method.

Theoretical results presented in Fig. 2 are compared with

experimental values obtained by Hasegawa et al. [5]. Anal-

ysis is made around the slow wave region, which is the

most interesting region.

For half of the structure, the number of triangular

domains was 55. Polynomials of the first degree have been

used, so the number of nodes was 34.

Good agreement with experimental results is observed in

Fig. 2, even for the attenuation constant, except for the

resistivit y p = 0.1 S2.cm. However, theoretical curves show

that the attenuation is minimum for this value. In this last

case, it is certainly necessary to take into account the

metallic losses.

Howeverj a difficulty exists for a first fixed frequency: If

the initialization of /30 is very far from the exact value, the

method can converge on a higher order mode. But, after a

good result, it is easy to describe a dispersive curve if the

initialization is made with the same phase velocity as the

one obtained for the previous frequency.

So the first initialization is made by using the value

obtained by a finite element quasi-TEM approximation
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based on the study described in [6]. This analysis can be

easily extended to Schottky contact microstrip lines if the

depletion layer is represented by a dielectric whose thick-

ness is a function of the applied reverse bias voltage [6], [7],

[11], [13], [14].

VI. CONCLUSION

This numerical method is valid for all analyses of dis-

sipative, shielded waveguides but it has been made, above

all, to study the propagation on microstrip or coplanar

lines realized on an epitaxial Ga& layer because these are

the configurations which present interesting possibilities

for monolithic microwave integrated circuits [7].

This method permits the thickness of the strip to be

taken into account. This is an important point because the

conductor thickness is in the same range as that of the

epitaxial layer.
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A Coordinate-Free Approach to Wave
Reflection from a Uniaxially,, .,,

Anisotropic &fedium

HOLLIS C. CHEN, SENIOR MEMBER, IEEE

Abstract —This paper presents a coordinate-free method of solving the

problem of electromagnetic wave reflection from the surface of a unix”ially

anisotropic medhrm. Based on the direct manipulation of vectors, dyadics,

and their invariants, the method eliminates the nse of coordinate systems.

It facilitates solutions and provides results in a greater genersfky. The

paper contains the following results in coordinate-free forms: a) the

dispersion eqnations; b) me directions of field vectors; c) the Poynting

vectors (ray vectors) and group velocities d) the’ laws of reflection and

refraction; and e) the ~ahsmission and reflection coefficients. The results

are valid for the incident wave having any polarization, and the optic axis of

the uniaxiaf medium hdng arbitrarily oriented with respect to the interface

and the plane of incidence.’

I. INTRODUCTION

B ECAUSE OF THE rapid advances in tec~ology,

wave propagation in anisotropic media such as plas-

mas, ferrites, etc., has become a subject of intense research

[ 1]-[7]. The emergence of coherent light and optical fibers

also makes wave propagation in dielectric crystals a topic

of special interest [8]–[ 12].

In applied electrornagnetics, the approach to solutions of

various boundary value problems has been the coordinate

method [8], [ 13]–[ 15]; that is,. during the processes of

solutions, one or more coordinate systems are introduced’.

Manuscript receivedJuly 14, 1982;revisedNovember 19, 1982.
The author is with the Department of Electrical and Computer En-

gineering, Ohio University, Athens, OH.

For example, in considering wave propagation in an aniso-

tropic crystal, we formulate and solve the problem with

respect to a particular coordinate system—the principal

coordinate system of the dielectric tensor [8]. However,

when a boundary surface exists, the problem becomes more

complex. In this case, two generally inconsistent require-

ments govern the choice of coordinate system. Inside the

crystal, the principal coordinate is preferred, but on the

boundary surface, a coordinate system with one of its

coordinate planes coinciding with the surface is preferred.

Using either system leads to a large number of simulta-

neous equations and ends in very cumbersome results [16].

Thus, only some special orientations of the optic axis with

respect to the interface and the plane of incidence have

been considered [17], [18]. ,’

In this paper, we shall present a coordinate-free method

to solutioni of wave reflection from a uniaxially artiso-

tropic medium. We consider only the case when i” is a

tensor while p is a scalar. The method applies equally well

to the dual case of ferrites. Since the electric and magnetic

fields are vector quantities, and they are related by the

vector Maxwell equations and constitutive relations, we

shall seek vector solutions directly from these vector equa-

tions. Based on the direct manipulation of vectors, dyadics,

and their inv@mts, the method eliminates the use of

0018-9480/83/0400-0331 $01.00 01983 IEEE


