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Finite Element Analysis of Lossy Waveguides-
Application to Microstrip Lines
on Semiconductor Substrate

MICHEL AUBOURG, JEAN-PIERRE VILLOTTE, FRANCK GODON, aND YVES GARAULT

Abstract —The development of Maxwell’s equations is made consider-
ing the electromagnetic fields as vector distributions. With the aid of the
finite element method, an analysis of lossy shielded inhomogenous wave-
guides of arbitrary shape is described.

To solve the complex matrix system an iterative procedure is presented.

The method is applied to study the propagation on MIS or Schottky
contact microstrip lines.

I. INTRODUCTION

'HE FINITE ELEMENT method applied to hybrid
wave analysis is commonly used to study propagation
along quasi-planar lines like microstrip or coplanar
lines [1], [2] and along dielectric-loaded waveguides [3] or

Manuscript received December 14, 1981; revised August 2, 1982. This
work was supported by the D.A.LIL under contract 80.35.188.007907500.

The authors are with the Laboratoire d’Electronique des Microondes,
Universite de Limoges, 87060 Limoges, Cedex, France.

dielectric waveguides [4]. In these analyses, materials are
considered lossless. It is generally sufficient because sub-
strate-like alumina or semi-insulating GaAs suited for mi-
crowave integrated circuits are low-loss media. Hence, skin
losses are the most important and can be calculated from
the current densities on the conductors.

But in monolithic microwave integrated circuits, to de-
crease the size of elements it is necessary to have a slow
wave propagation medium. It is possible to obtain very
slow wave propagation by using MIS or Schottky contact
realized on a semiconducting substrate [S]—[7]. In this case,
the propagation constant and electromagnetic field are
complex.

The purpose of this paper is to present, with the aid of
the finite element method, a two-dimensional analysis of
the propagation in inhomogeneous lossy waveguides. The
development of Maxwell’s equation is made considering

0018-9480 /83 /0400-0326301.00 ©1983 IEEE
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the electromagnetic fields as distributions [8]. By applying
the finite element method, the analysis leads to a complete
matrix system.

Compared to the procedure given in [9], this solution has
the advantage of yielding symmetrical matrices in which
frequency appears as a parameter.

This numerical method is then applied to study micro-
strip lines on a semiconducting substrate [10].

11I. DERIVATION OF EQUATIONS

A. Notation

The wave is assumed to propagate in the positive z
direction with

é(x,y,z,t) =6J’ue{b§(x, Y, z)ej“"}

h(x,y,z,t)= @le{ﬁ(x, v, z)ef“”}

(1)

where
E(x,p,2)=E(x,y)e™
H(x,y,2)=H(x, y)e " (2a)
and
E(x,y)=E,(x,y)+E,(x, )i,
H(x,p)=H/(x, y)+H,(x, y)i, (2b)

and y = a + jB is the complex propagation constant.

The waveguide is supposed to be loaded by N lossy
dielectrics of permittivity €, and conductivity o,. These
values can be functions of the transverse coordinates.

We define

Q;  internal domain of permittivity ¢, and conductiv-
ity o;;
N
Q U, I1<igN;
L, ilntclerface between media i and j, 1<i< j< N;
I,  electrical walls;
I,,  magnetic walls;

unit vector normal to T, oriented towards the
inside of the waveguide;

unit vector normal to T, , oriented towards Q0
and

~
3

/\=l

1 .0, .
E’(x’y)=?0(€i_15)’ lf(x9y)69i

N
L, if(x,y)eUq,
i =1
L(x’ y) = IN
09 if(x’y)$ UQI'
i=1
B. Transformation of the Equations

The problem is to determine the distributions of the
electromagnetic field

L(x,y) E(x,y,z) and L(x,y) H(x,y,z2).
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So the Maxwell’s equations can be written
v X{LE }=1,,~ jopoLH (32)
(3b)

J;s and J:s are the current density distributions defined
respectively on the magnetic and electrical walls

v X{L-ﬁ)= _:S + jweoe,LE;.

- e
J = me‘rme

(4a)
(4b)

L

es ‘]:8I‘ee_yz'
(L) indicates that the support of J:(J;) is T ,(T,,).
After a first development, (3a) leads to
(VXLE, ¢Y+y(LEX#,, ¢y=(J0r, ¢)
- f‘*’l’w(Lﬁ, ‘l;> (%)
where q; are the test functions, i.e.,
(VXLE, ¢)=(LE, {VX)¢).

({ v X} means that the operator v X is taken in the
sense of functions.)
The relation (5) is equivalent to

ffRzLE-(v x)&dxdy+yfj;z2(LE>< i) ddxdy

= fr me- $dT,, ~ jon, [ fR LH-gdxdy. (6)
Integrating the first term by parts we have

ffRzL}f-{V x}&dxdy=ffR2L((v XVE)-¢ds dy
+L(ﬁexﬁ)-$dfe+‘£‘ (ﬁ’mxf).gdl"m

+ X [ (A x

E,.+nj
1< ;L

XE,)-¢dT, (7)

and writing equality between distributions, (6) leads to

—

{v X)E+yEXﬁz=— 'w‘u,oﬁ (8a)
i, X E=0, onT, (8b)
fz’eXE—:=f;n, onl,, (8¢)

i, X E+7 xE=0, onT,,,1<i<j<N.
(8d)

These relations show that the first Maxwell’s equation is
verified (in the sense of functions) (8a), the tangential
component of E is equal to 0 on an electrical wall (8b), and
is continuous at an interface (8d). The relation (8c) is an
identity and can be used to define J,,. Similar derivation
can be made from (3b). To study the propagation it is
sufficient to solve (3a) and (3b) in which J,, and J, are
eliminated and the supports of the distributions are re-
duced to €, and £,(2. = R* ~ T ) because the currents

are induced.
Taking into account transverse and longitudinal distri-
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butions, the problem to solve is

v X(LE)) = - jopoLH,#,, on®, (9a)

v X(LH,) = joege,LE,i,, onQ, (9b)
with the relations between components defined by

v X(LE,i,)+YLE, X il, = — jop,LH, (10a)

v X (LH,i,)+YLH, X ii, = joeg,LE,.  (10Db)

If the continuities of E, and H, are imposed on £, and if
E,=0o0n T, and H,=0 on T, the following relations are
equivalent to (10)

k2E, = — ¥{V)E, — joopol VYH, X ii, (11a)
k2H = —y{V}H,+ joeg,{V)E, X i, " (11b)
2
1
kf=—u—)*e +y2 %= )
2’ Y €oltg

For numerical procedure it is more convenient to use the
reduced longitudinal components ¢ and ® defined by

y=/eE, and ®=p,H,.

If “Yis the space vector of continuous functions on Q, Y,
the subspace of Y equal to 0 on I, V the subspace of Y
equal to 0 on I, and if ¢, are respectlvely, the test
functions of V, and . the "relations (9a) and (9b) are
equivalent to

[ e B9 X)) dxdy = = - [ | @0, dxdy

(12a)
[ e tv X)) dxdy = i [[ ey, dvdy
(12b)

and taking into account (11), the final form of the relations
is

(V}<I> (V) dcdy

"J_'_/f @ (VX (9)4,) i, dedy

= fj;)tlhﬁmdxdy (13a)
/fﬂ%ewi-{v)qsedxdy
—J—/f (VYo (V) @) i, dedy
-/ fenbs.dxdy. (13b)

This formulation has the advantage of being directly
deduced from Maxwell’s equations.
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III. APPLICATION OF THE FINITE ELEMENT

METHOD

The finite element method is well known [1]-[3].

The method consists of dividing the cross section of
the waveguide into triangular subdomains. The unknown
solution is approximated by polynomials. Lagrange poly-
nomials are chosen as shape functions. A k degree poly-
nomial P(x, y) has d = (k +1)(k +2)/2 degrees of free-
dom. This polynomial is defined if the values are known at
d points.

The polynomials P,(x, y) defined in (14) are associated
at each node located by u(p,, 5, p5). d nodes are defined
for each mesh p,=kA,, 1<i<3, and A, are the area
coordinates

Pp.('x> y)= qyl(}\l)qu()\z)qps(ka)
=1

if p,=0 (14)

with

JA, (KX, = 1)- - - ifp,>1

0, (M) =5 (X, = (1, =),

At each node i of the triangular mesh K, the basis function
associated is

IEACHD V(x,y)eK
W(xy)= {0 V(x, y) € K. (15)

So ¢ and ® can be developed with the basis functions

YO, p) =24 W (x,p),  1<isS,
Je
W,(x,y)=0, onT, (16a)
o(x,y)= Z W, (x,y), 1<j,<S,
W, (x,y)= 0, onTl, (16b)
where S is the number of nodes.
Equations (13a) and (13b) then become
Yya.+ Zw J(@. W, )= 4b  (17a)
e je
L®,a,+ Z%J( o bn) =295, (17b)
Jm Je Jm

with
a —f/ AT (VW ey

an={f s
b, =ffﬂe,¢e-
=S

I(u,0)=— j L& ff ((V}ux{v}v)udxdy.

{V}d)m{V}W dx dy
W, dxdy

. dxdy
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The basis functions W, are respectively used as functions
€

¢, and ¢,,.
If 4,, 4,,, B,, B,,, and L are matrices obtained after
development of (17), and if ¢ and ¢ represent the column
vectors (y; } and (@, }, respectively, (17a) and (17b) can be
summarized in the form
Ay +CO=By

CYy+A,0=B0 (18)

with the notation
A, C
C' 4

B

€

0

- . (19)

4
o

}
m

m
The matrix system to be solved is

AX = BX.

A and B are complex symmetrical matrices and X is a
complex column vector.

In most cases, A and X are functions of w, (a,8). Bis a
function of w only.

If the frequency is chosen as a parameter, it is necessary
to calculate a, 8, and X.

IV. NUMERICAL PROCEDURE [10]

An iterative procedure is applied on « and 8 to solve
(19).
For a fixed frequency, a; and f, are chosen. A(ay, 8;)
and Y(a,, B,) are defined by
AY =\BY. (20)
This relation is equivalent to (19) if A is equal to unity.
To realize this condition the algorithm of the power

method which gives the largest eigerivalue 7 is applied to
the matrix (4 — B)™'B. |

(4- B)~1BY= nY is equivalent to AY = (1+ E)BY'

As 7 is the largest eigenvalue, A=1+1/% extends to
one.

The Newton-Ralphson method is applied to obtain the
convergence of the iterative procedure.

R, (Ag)

LW(AKJ
(k +1) iterations, a, . and B, are defined by

Ag+1 ax R.(Ax)-1
= — J_l 5
[BKH] {,BK] v (o Bi) I,(Ag)
where J, is the Jacobian matrix

R, (\g)  IR(\g)

A is considered as the vector and for the

] (1)

da ap
Moo= o0 o000 | ®
da a8

To calculate dA g /da and IA /3B it is necessary to
write A in the following form:

>\("fkaﬁk)= 1

—_—  YhA-Y
Y*“B-Y
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Si02 e =4 H,
Si £r=12 H2
H1=1 Um
W=160 um
H,=250 um

2
Fig. 1. Cross section of the MIS microstrip line.

SO _
dA 1 dA
3. d 3 Y. (23)
I Y“B-Y I

The advantages of this formulation compared to a prece-
dent analysis [9] are that matrices are symmetrical (which
is an important point for numerical procedure) and that
frequency appears as a parameter.

V. APPLICATIONS

This analysis has been applied to MIS microstrip lines.
The basic structure is represented in Fig. 1.

Most analyses of microstrip lines on semiconductor sub-
strates [5], [11], [12] have been made with the aid of the
parallel-plate waveguide model with a double layer medium
[13]. As these are one-dimensional analyses, it is necessary
to introduce a correcting factor by analogy with the com-
mon strip treatment to take into account the width of the
strip [11], [14].

More recently, the spectral domain approach (SDA) [15]
has been applied to the MIS structure, and the results are
in good agreement with the finite element method.

Theoretical results presented in Fig. 2 are compared with
experimental values obtained by Hasegawa er al. [5]. Anal-
ysis is made around the slow wave region, which is the
most interesting region.

For half of the structure, the number of triangular
domains was 55. Polynomials of the first degree have been
used, so the number of nodes was 34.

Good agreement with experimental results is observed in
Fig. 2, even for the attenuation constant, except for the
resistivity p = 0.1 £-cm. However, theoretical curves show
that the attenuation is minimum for this value. In this last
case, it is certainly necessary to take into account the
metallic losses.

However, a difficulty exists for a first fixed frequency: If
the initialization of 8 is very far from the exact value, the
method can converge on a higher order mode. But, after a
good result, it is easy to describe a dispersive curve if the
initialization is made with the same phase velocity as the
one obtained for the previous frequency.

So the first initialization is made by using the value
obtained by a finite element quasi-TEM approximation
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Fig. 2. Comparison between theoretical and experimental results. (a)
Slowing factor. (b) Attenuation.

based on the study described in {6]. This analysis can be
easily extended to Schottky contact microstrip lines if the
depletion layer is represented by a dielectric whose thick-
ness is a function of the applied reverse bias voltage [6], [7],
[11], [13], [14].

V1. CoNcLUsION

This numerical method is valid for all analyses of dis-
sipative, shielded waveguides but it has been made, above
all, to study the propagation on microstrip or coplanar
lines realized on an epitaxial GaAs layer because these are
the configurations which present interesting possibilities
for monolithic microwave integrated circuits [7].

This method permits the thickness of the strip to be
taken into account. This is an important point because the
conductor thickness is in the same range as that of the
epitaxial layer.

iy

(14

[15]
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A Coordinate-Free Approach to Wave
Reflection from a Uniaxially
- Anisotropic Medium

HOLLIS C. CHEN, SENIOR MEMBER, IEEE B

-Abstract ~—This paper presents a coordinate-free method of solving the
problem of electromagnetic wave réflection from the surface of a uniaxially
anisotropic medium. Based on the direct manipulation of vectors, dyadics,
and their invariants, the method eliminates the use of coordinate systems.
It facilitates solutions and provndes results in a greater generality. The
paper contains . the followmg results in coordinaté- free forms: a) the
dispersion equations; b) the directions of field vectors; c) the Poyntmg
vectors (ray vectors) and group velocities; d) the laws of reflection and
refraction; and e) the transmnssnon and reflection coefficients. The results
are valid for the incident wave having any polanzatlon, and the optic axis of
the uniaxial medium being arbitrarily oriented with respect to the interface
and the plane of mcndence ‘ .

I INTRODUCTION

ECAUSE OF THE rapid advances in technology,
wave propagation in anisotropic media such as plas-
mas, ferrites, etc., has b_ec_ome a subject of intense research
[1]-[7]. The emergence of coherent light and optical fibers
also makes wave propagation in dielectric crystals a topic
of special interest [8]—- —[12].
~In apphed electromagnetics, the approach to solutions of
various boundary value problems has been the coordinate
method [8], [13]-[15]; that is, during the processes of
solutions, one or more coordmate systems are 1ntroduced
Manuscript received July 14, 1982; revised November 19, 1982.

The_author is with the Department of Electrical and Computer En—
gineering, Ohio University, Athens, OH

For example, in considering wave propagation in an aniso-
tropic crystal, we formulate and solve the problem with
respect to a particular coordinate system—the principal

coordinate system -of the dielectric tensor [8]. However,

when' a boundary surface exists, the problem becomes more
complex. In this case, two generally inconsistent require-
ments govern the choice of coordinate system. Inside the .
crystal, the principal coordinate is preferred, but on the
boundary surface, a coordinate system with one of ‘its
coordinate planes coinciding with the surface is preferred.
Using either system leads to a large number of simulta-
neous equations and ends in very cumbersome results [16].
Thus, only some special orientations.of the optic-axis with
respect to the interface and the plane of 1nc1dence have
been considered [17], [18]

In this paper, we shall present a coordmate—free method
to solutions of wave reflection from a uniaxially aniso-
tropic medium. We consider only ‘the case when € is a
tensor while p is a scalar. The method applies equally well
to the dual case of ferrites. Since the électric and magnetic
fields are vector quantities, and they are related by the
vector Maxwell equations and constitutive relations, we
shall seek vector solutions directly from these vector equa-
tions. Based on the d1rect manipulation of vectors, dyadics,
and the1r 1nvar1ants the method eliminates the use of
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